Fast 180° magnetization switching in a strain-mediated multiferroic heterostructure driven by a voltage

نویسندگان

  • Ren-Ci Peng
  • Jia-Mian Hu
  • Kasra Momeni
  • Jian-Jun Wang
  • Long-Qing Chen
  • Ce-Wen Nan
چکیده

Voltage-driven 180° magnetization switching provides a low-power alternative to current-driven magnetization switching widely used in spintronic devices. Here we computationally demonstrate a promising route to achieve voltage-driven in-plane 180° magnetization switching in a strain-mediated multiferroic heterostructure (e.g., a heterostructure consisting of an amorphous, slightly elliptical Co40Fe40B20 nanomagnet on top of a Pb(Zr,Ti)O3 film as an example). This 180° switching follows a unique precessional path all in the film plane, and is enabled by manipulating magnetization dynamics with fast, local piezostrains (rise/release time <0.1 ns) on the Pb(Zr,Ti)O3 film surface. Our analyses predict ultralow area energy consumption per switching (~0.03 J/m(2)), approximately three orders of magnitude smaller than that dissipated by current-driven magnetization switching. A fast overall switching time of about 2.3 ns is also demonstrated. Further reduction of energy consumption and switching time can be achieved by optimizing the structure and material selection. The present design provides an additional viable route to realizing low-power and high-speed spintronics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-driven charge-mediated fast 180 degree magnetization switching in nanoheterostructure at room temperature

Voltage-driven 180° magnetization switching without electric current provides the possibility for revolutionizing the spintronics. We demonstrated the voltage-driven charge-mediated 180° magnetization switching at room temperature by combining firstprinciples calculations and temperature-dependent magnetization dynamics simulation. The electric field (E)-induced interface charge is found to all...

متن کامل

Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure

The electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observe...

متن کامل

Electric-field-driven magnetization switching and nonlinear magnetoelasticity in Au/FeCo/MgO heterostructures

Voltage-induced switching of magnetization, as opposed to current-driven spin transfer torque switching, can lead to a new paradigm enabling ultralow-power and high density instant-on nonvolatile magnetoelectric random access memory (MeRAM). To date, however, a major bottleneck in optimizing the performance of MeRAM devices is the low voltage-controlled magnetic anisotropy (VCMA) efficiency (ch...

متن کامل

Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure.

A reversal of magnetization requiring only the application of an electric field can lead to low-power spintronic devices by eliminating conventional magnetic switching methods. Here we show a nonvolatile, room temperature magnetization reversal determined by an electric field in a ferromagnet-multiferroic system. The effect is reversible and mediated by an interfacial magnetic coupling dictated...

متن کامل

Electric field induced reversible 180° magnetization switching through tuning of interfacial exchange bias along magnetic easy-axis in multiferroic laminates

E-field control of interfacial exchange coupling and deterministic switching of magnetization have been demonstrated in two sets of ferromagnetic(FM)/antiferromagnetic(AFM)/ferroelectric(FE) multiferroic heterostructures, including NiFe/NiCoO/glass/PZN-PT (011) and NiFe/FeMn/glass/PZN-PT (011). We designed this experiment to achieve exchange bias tuning along the magnetic easy axis, which is cr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016